澳门新浦京电子游戏基于 HTML5 的 3D 网络拓扑树呈现

在HT for
Web中2D和3D应用都支持树状结构数据的展示,展现效果各异,2D上的树状结构在展现层级关系明显,但是如果数据量大的话,看起来就没那么直观,找到指定的节点比较困难,而3D上的树状结构在展现上配合HT
for
Web的弹力布局组件会显得比较直观,一眼望去可以把整个树状结构数据看个大概,但是在弹力布局的作用下,其层次结构看得就不是那么清晰了。所以这时候结构清晰的3D树的需求就来了,那么这个3D树具体长成啥样呢,我们来一起目睹下~

HT for Web的HTML5树组件延迟加载技术实现,hthtml5

澳门新浦京电子游戏,HT for Web的HTML5树组件有延迟加载的功能,这个功能对于那些需要从服务器读取具有层级依赖关系数据时非常有用,需要获取数据的时候再向服务器发起请求,这样可减轻服务器压力,同时也减少了浏览器的等待时间,让页面的加载更加流畅,增强用户体验。

进入正题,今天用来做演示的Demo是,客户端请求服务器读取系统文件目录结构,通过HT for Web的HTML5树组件显示系统文件目录结构。

首先,我们先来设计下服务器,这次Demo的服务器采用Node.js,用到了Node.js的express、socket.io、fs和http这四个模块,Node.js的相关知识,我在这里就不阐述了,网上的教材一堆,这里推荐下socket.io的相关入门

服务端代码代码:

var fs = require('fs'),
    express = require('express'),
    app = express(),
    server = require('http').createServer(app),
    io = require('socket.io')(server),
    root = ‘/Users/admin/Projects/ht-for-web/guide‘;

io.on('connection', function(socket){
    socket.on('explore', function(url){
        socket.emit('file', walk(url || root));
    });
});

app.use(express.static('/Users/admin/Projects/ht-for-web'));

server.listen(5000, function(){
    console.log('server is listening at port 5000');
});

io监听了connection事件,并获得一个socket;socket再监听一个叫explore的自定义事件,通过url参数获取到数据后,派发一个叫file的自定义事件,供客户端监听并做相应处理;通过app.use结合express.static设置项目路径;最后让server监听5000端口。

到此,一个简单的服务器就搭建好了,现在可以通过

function walk(pa) {
    var dirList = fs.readdirSync(pa),
        key = pa.substring(pa.lastIndexOf('/') + 1),
        obj = {
            name: key,
            path: pa,
            children: [],
            files: []
        };
    dirList.forEach(function(item) {
        var stats = fs.statSync(pa + '/' + item);
        if (stats.isDirectory()) {
            obj.children.push(walk(pa + '/' + item));
        }
        else {
            obj.files.push({name: item, dir: pa + '/' + item});
        }
    });

    return obj;
}

如大家所见,采用递归的方式,逐层遍历子目录,代码也没什么高深的地方,相信大家都看得懂。那我们来看看运行效果吧:

澳门新浦京电子游戏 1

 

duang~文件目录结构出来了,是不是感觉酷酷的,这代码量不小吧。其实,代码并不多,贴出来大家瞅瞅:

<!DOCTYPE html>
<html>
<head lang="en">
    <meta charset="UTF-8">
    <title>tree-loader</title>
    <script src="/socket.io/socket.io.js"></script>
    <script src="/lib/core/ht.js"></script>
    <script>
        var socket = io(), idMap = {};
        function init() {
            var dm = window.dm = new ht.DataModel(),
                    tree = new ht.widget.TreeView(dm);

            tree.addToDOM();

            socket.on('file', function(data) {
                var root = dm.getDataById(idMap[data.path]);
                createChildren(data.children || [], root, dm);
                createFiles(data.files || [], root, dm);
            });
            socket.emit('explore');
        }

        function createChildren(children, parent, dm) {
            children.forEach(function(child) {
                var n = createData(child, parent);
                dm.add(n);
                createChildren(child.children || [], n, dm);
                createFiles(child.files || [], n, dm);
            });
        }

        function createFiles(files, parent, dm){
            files.forEach(function(file){
                var n = createData(file, parent);
                dm.add(n);
            });
        }

        function createData(data, parent){
            var n = new ht.Data();
            n.setName(data.name);
            n.setParent(parent);
            n.a('path', data.path);
            idMap[data.path] = n.getId();
            return n;
        }
    </script>
</head>
<body onload="init();">
</body>
</html>

这就是全部的HTML代码,加上空行总共也就50几行,怎么样,有没有感觉HT for
Web很强大。废话不多说,来看看这些代码都干了些什么:

  • 要用到socket.io就需要在页面引入<script
    src=“/socket.io/socket.io.js”></script>,其实在我的项目中并不存在/socket.io/socket.io.js文件,但是却能正常使用,具体什么原因,我就不多说,大家自己研究去吧;
  • 最重要的是要引入HT for
    Web的核心包<script
    src=“/lib/core/ht.js”></script>,这个包不引入的话,下面的HT
    for Web组件就无法使用;
  • 接下来就是代码了,首先创建一个数据容器DataModel,用来存放文件目录的节点数据,再创建一个TreeView对象并引用刚创建到数据容器,接下来通过socket监听file事件,获取服务器返回的数据,在回调函数中通过调用createChildren和createFiles函数,创建文件目录节点对象,并添加到数据容器中,最后是向服务器发起数据请求,即通过socket派发explore事件。

整体的思路是这样子的,当然这离我们要实现的树组件的延迟加载技术还有些差距,那么,HT for Web的HTML5树组件的延迟加载技术是怎么实现的呢?不要着急,马上开始探讨。

首先我们需要改造下获取文件目录的方法walk,因为前面介绍的方法中,使用的是加载整站文件目录,所以我们要将walk方法改造成只获取一级目录结构,改造起来很简单,就是将递归部分改造成获取当前节点就可以了,具体代码如下:

obj.children.push(walk(pa + '/' + item));
// 将上面对代码改成下面的代码
obj.children.push({name: item, path: pa + '/' + item});

这样子服务器就只请求当前请求路径下的第一级文件目录结构。接下来就是要调整下客户端代码了,首先需要给tree设置上loader:

tree.setLoader({
    load: function(data) {
        socket.emit('explore', data.a('path'));
        data.a('loaded', true);
    },
    isLoaded: function(data) {
        return data.a('loaded');
    }
});

loader包含了两个方法,load和isLoaded,这两个方法的功能分别是加载数据和判断数据是否已经加载,在load方法中,对socket派发explore事件,当前节点的path为参数,向服务器请求数据,之后将当前节点的loaded属性设置为true;在isLoaded方法中,返回当前节点的loaded属性,如果返回为true,那么tree将不会在执行load方法向服务器请求数据。

接下来需要移除createChildren的两个回调方法,并且在createFiles方法中为创建出来的节点的loaded属性设置成true,这样在不是目录的节点前就不会有展开的图标。createChildren和createFiles两个方法修改后的代码如下:

function createChildren(children, parent, dm) {
    children.forEach(function(child) {
        var n = createData(child, parent);
        dm.add(n);
    });
}

function createFiles(files, parent, dm){
    files.forEach(function(file){
        var n = createData(file, parent);
        n.a('loaded', true);
        dm.add(n);
    });
}

如此,HT for
Web的HTML5树组件延迟加载技术就设计完成了,我在服务器的控制台打印出请求路径,看看这个延迟加载是不是真的,如下图:

澳门新浦京电子游戏 2

 

澳门新浦京电子游戏 3

看吧,控制台打印的是4条记录,第一条是请求跟目录时打印的,我在浏览器中展开里三个目录,在控制台打印了其对应的目录路径。

等等,现在这个目录看起来好烦,只有文字,除了位子前的展开图标可以用来区别文件和目录外,没有其他什么区别,所以我决定对其进行一番改造,让每一级目录都有图标,而且不同文件对应不同的图标,来看看效果吧:

澳门新浦京电子游戏 4

 

怎么样,是不是一眼就能看出是什么文件,这个都是样式上面的问题,我就不再一一阐述了,直接上代码:

<!DOCTYPE html>
<html>
<head lang="en">
    <meta charset="UTF-8">
    <title></title>
    <script src="/socket.io/socket.io.js"></script>
    <script src="/build/ht-debug.js"></script>
    <script>
        var socket = io(), idMap = {};
        function init() {
            var icons = ['css', 'dir-open', 'dir', 'file', 'flash', 'gif', 'html', 'jar',
                'java', 'mp3', 'pdf', 'png', 'script', 'txt', 'video', 'xml', 'zip'];
            icons.forEach(function(c){
                ht.Default.setImage(c, 16, 16, '/test/wyl/images/' + c + '.png');
            });

            var dm = window.dm = new ht.DataModel(),
                    tree = new ht.widget.TreeView(dm);
            tree.setLoader({
                load: function(data) {
                    socket.emit('explore', data.a('path'));
                    data.a('loaded', true);
                },
                isLoaded: function(data) {
                    return data.a('loaded');
                }
            });
            tree.getLabelFont = function(data){
                return '13px Helvetica, Arial, sans-serif';
            };
            tree.getLabelColor = function (data) {
                return this.isSelected(data) ? 'white' : 'black';
            };
            tree.getSelectBackground = function (data) {
                return '#408EDB';
            };
            tree.getIcon = function (data) {
                var icon = data.getIcon() || 'file';
                if (data.a('isdir')) {
                    if (this.isExpanded(data)) {
                        icon = 'dir-open';
                    } else {
                        icon = 'dir';
                    }
                }
                return icon;
            };
            tree.addToDOM();

            socket.on('file', function(data) {
                var root = dm.getDataById(idMap[data.path]);
                createChildren(data.children || [], root, dm);
                createFiles(data.files || [], root, dm);
            });
            socket.emit('explore');
        }

        function createChildren(children, parent, dm) {
            children.forEach(function(child) {
                var n = createData(child, parent);
                n.a('isdir', true);
                dm.add(n);
            });
        }

        function createFiles(files, parent, dm){
            files.forEach(function(file){
                var n = createData(file, parent);
                n.a('loaded', true);
                dm.add(n);
            });
        }

        function createData(data, parent){
            var name = data.name,
                    icon = 'file';
            if (/.jar$/.test(name)) icon = 'jar';
            else if (/.css$/.test(name)) icon = 'css';
            else if (/.gif$/.test(name)) icon = 'gif';
            else if (/.png$/.test(name)) icon = 'png';
            else if (/.js$/.test(name)) icon = 'script';
            else if (/.html$/.test(name)) icon = 'html';
            else if (/.zip$/.test(name)) icon = 'zip';
            var n = new ht.Data();
            n.setName(data.name);
            n.setParent(parent);
            n.setIcon(icon);
            n.a('path', data.path);
            idMap[data.path] = n.getId();
            return n;
        }
    </script>
</head>
<body onload="init();">
</body>
</html>

在最后,附上完整的服务器代码:

var fs = require('fs'),
    express = require('express'),
    app = express(),
    server = require('http').createServer(app),
    io = require('socket.io')(server),
    root = '/Users/admin/Projects/ht-for-web/guide';

io.on('connection', function(socket){
    socket.on('explore', function(url){
        socket.emit('file', walk(url || root));
    });
});

app.use(express.static('/Users/admin/Projects/ht-for-web'));

server.listen(5000, function(){
    console.log('server is listening at port 5000');
});

function walk(pa) {
    var dirList = fs.readdirSync(pa),
        key = pa.substring(pa.lastIndexOf('/') + 1),
        obj = {
            name: key,
            path: pa,
            children: [],
            files: []
        };
    dirList.forEach(function(item) {
        var stats = fs.statSync(pa + '/' + item);
        if (stats.isDirectory()) {
            obj.children.push({name: item, path: pa + '/' + item});
        }
        else {
            obj.files.push({name: item, dir: pa + '/' + item});
        }
    });

    return obj;
}

 

for Web的HTML5树组件延迟加载技术实现,hthtml5
HT for Web 的 HTML5树组件
有延迟加载的功能,这个功能对于那些需要从服务器读取具有层级依…

2D拓扑的应用在电信网管和电力SCADA领域早已习以为常了,随着OpenGL特别是WebGL技术的普及,3D方式的数据可视化也慢慢从佛殿神堂步入了寻常百姓家,似乎和最近高档会所被整改为普通茶馆是一样的节奏。

澳门新浦京电子游戏 5

澳门新浦京电子游戏 6

要实现这样的效果,该从何下手呢?接下来我们就将这个问题拆解成若干个小问题来解决。

3D呈现固然比2D方式更直观,但如果摆放图元布局却比2D麻烦,毕竟增加了一个维度,手工布局不如以前2D手工操作方便,因此3D的自动布局功能比2D凸显其重要性。最近玩了玩HT的弹力自动布局插件挺有意思,特别在平板上Touch方式拖拽三维空间图元节点时,对我这种控制欲较强者很有满足感。

1. 创建一个树状结构

有了解过HT for
Web的朋友,对树状结构数据的创建应该都不陌生,在这里我就不做深入的探讨了。树状结构数据的创建很简单,在这里为了让代码更简洁,我封装了三个方法来创建树状结构数据,具体代码如下:

/**
 * 创建连线
 * @param {ht.DataModel} dataModel - 数据容器
 * @param {ht.Node} source - 起点
 * @param {ht.Node} target - 终点
 */
function createEdge(dataModel, source, target) {
    // 创建连线,链接父亲节点及孩子节点
    var edge = new ht.Edge();
    edge.setSource(source);
    edge.setTarget(target);
    dataModel.add(edge);
}

/**
 * 创建节点对象
 * @param {ht.DataModel} dataModel - 数据容器
 * @param {ht.Node} [parent] - 父亲节点
 * @returns {ht.Node} 节点对象
 */
function createNode(dataModel, parent) {
    var node = new ht.Node();
    if (parent) {
        // 设置父亲节点
        node.setParent(parent);

        createEdge(dataModel, parent, node);
    }
    // 添加到数据容器中
    dataModel.add(node);
    return node;
}

/**
 * 创建结构树
 * @param {ht.DataModel} dataModel - 数据容器
 * @param {ht.Node} parent - 父亲节点
 * @param {Number} level - 深度
 * @param {Array} count - 每层节点个数
 * @param {function(ht.Node, Number, Number)} callback - 回调函数(节点对象,节点对应的层级,节点在层级中的编号)
 */
function createTreeNodes(dataModel, parent, level, count, callback) {
    level--;
    var num = (typeof count === 'number' ? count : count[level]);

    while (num--) {
        var node = createNode(dataModel, parent);
        // 调用回调函数,用户可以在回调里面设置节点相关属性
        callback(node, level, num);
        if (level === 0) continue;
        // 递归调用创建孩子节点
        createTreeNodes(dataModel, node, level, count, callback);
    }
}

嘿嘿,代码写得可能有些复杂了,简单的做法就是嵌套几个for循环来创建树状结构数据,在这里我就不多说了,接下来我们来探究第二个问题。

澳门新浦京电子游戏 7
 

2. 在2D拓扑下模拟3D树状结构每层的半径计算

在3D下的树状结构体最大的问题就在于,每个节点的层次及每层节点围绕其父亲节点的半径计算。现在树状结构数据已经有了,那么接下来就该开始计算半径了,我们从两层树状结构开始推算:

澳门新浦京电子游戏 8

我现在先创建了两层的树状结构,所有的子节点是一字排开,并没有环绕其父亲节点,那么我们该如何去确定这些孩子节点的位置呢?

首先我们得知道,每个末端节点都有一圈属于自己的领域,不然节点与节点之间将会存在重叠的情况,所以在这里,我们假定末端节点的领域半径为25,那么两个相邻节点之间的最短距离将是两倍的节点领域半径,也就是50,而这些末端节点将均匀地围绕在其父亲节点四周,那么相邻两个节点的张角就可以确认出来,有了张角,有了两点间的距离,那么节点绕其父亲节点的最短半径也就能计算出来了,假设张角为a,两点间最小距离为b,那么最小半径r的计算公式为:

r = b / 2 / sin(a / 2);

那么接下来我么就来布局下这个树,代码是这样写的:

/**
 * 布局树
 * @param {ht.Node} root - 根节点
 * @param {Number} [minR] - 末端节点的最小半径
 */
function layout(root, minR) {
    // 设置默认半径
    minR = (minR == null ? 25 : minR);
    // 获取到所有的孩子节点对象数组
    var children = root.getChildren().toArray();
    // 获取孩子节点个数
    var len = children.length;
    // 计算张角
    var degree = Math.PI * 2 / len;
    // 根据三角函数计算绕父亲节点的半径
    var sin = Math.sin(degree / 2),
        r = minR / sin;
    // 获取父亲节点的位置坐标
    var rootPosition = root.p();

    children.forEach(function(child, index) {
        // 根据三角函数计算每个节点相对于父亲节点的偏移量
        var s = Math.sin(degree * index),
            c = Math.cos(degree * index),
            x = s * r,
            y = c * r;

        // 设置孩子节点的位置坐标
        child.p(x + rootPosition.x, y + rootPosition.y);
    });
}

在代码中,你会发现我将末端半径默认设置为25了,如此,我们通过调用layout()方法就可以对结构树进行布局了,其布局效果如下:

澳门新浦京电子游戏 9

从效果图可以看得出,末端节点的默认半径并不是很理想,布局出来的效果连线都快看不到了,因此我们可以增加末端节点的默认半径来解决布局太密的问题,如将默认半径设置成40的效果图如下:

澳门新浦京电子游戏 10

现在两层的树状分布解决了,那么我们来看看三层的树状分布该如何处理。

将第二层和第三层看成一个整体,那么其实三层的树状结构跟两层是一样的,不同的是在处理第二层节点时,应该将其看做一个两层的树状结构来处理,那么像这种规律的处理用递归最好不过了,因此我们将代码稍微该着下,在看看效果如何:

澳门新浦京电子游戏 11

不行,节点都重叠在一起了,看来简单的递归是不行的,那么具体的问题出在哪里呢?

仔细分析了下,发现父亲节点的领域半径是由其孩子节点的领域半径决定的,因此在布局时需要知道自身节点的领域半径,而且节点的位置取决于父亲节点的领域半径及位置信息,这样一来就无法边计算半径边布局节点位置了。

那么现在只能将半径的计算和布局分开来,做两步操作了,我们先来分析下节点半径的计算:

首先需要明确最关键的条件,父亲节点的半径取决于其孩子节点的半径,这个条件告诉我们,只能从下往上计算节点半径,因此我们设计的递归函数必须是先递归后计算,废话不多说,我们来看下具体的代码实现:

/**
 * 就按节点领域半径
 * @param {ht.Node} root - 根节点对象
 * @param {Number} minR - 最小半径
 */
function countRadius(root, minR) {
    minR = (minR == null ? 25 : minR);

    // 若果是末端节点,则设置其半径为最小半径
    if (!root.hasChildren()) {
        root.a('radius', minR);
        return;
    }

    // 遍历孩子节点递归计算半径
    var children = root.getChildren();
    children.each(function(child) {
        countRadius(child, minR);
    });

    var child0 = root.getChildAt(0);
    // 获取孩子节点半径
    var radius = child0.a('radius');

    // 计算子节点的1/2张角
    var degree = Math.PI / children.size();
    // 计算父亲节点的半径
    var pRadius = radius / Math.sin(degree);

    // 设置父亲节点的半径及其孩子节点的布局张角
    root.a('radius', pRadius);
    root.a('degree', degree * 2);
}

OK,半径的计算解决了,那么接下来就该解决布局问题了,布局树状结构数据需要明确:孩子节点的坐标位置取决于其父亲节点的坐标位置,因此布局的递归方式和计算半径的递归方式不同,我们需要先布局父亲节点再递归布局孩子节点,具体看看代码吧:

/**
 * 布局树
 * @param {ht.Node} root - 根节点
 */
function layout(root) {
    // 获取到所有的孩子节点对象数组
    var children = root.getChildren().toArray();
    // 获取孩子节点个数
    var len = children.length;
    // 计算张角
    var degree = root.a('degree');
    // 根据三角函数计算绕父亲节点的半径
    var r = root.a('radius');
    // 获取父亲节点的位置坐标
    var rootPosition = root.p();

    children.forEach(function(child, index) {
        // 根据三角函数计算每个节点相对于父亲节点的偏移量
        var s = Math.sin(degree * index),
            c = Math.cos(degree * index),
            x = s * r,
            y = c * r;

        // 设置孩子节点的位置坐标
        child.p(x + rootPosition.x, y + rootPosition.y);

        // 递归调用布局孩子节点
        layout(child);
    });
}

代码写完了,接下来就是见证奇迹的时刻了,我们来看看效果图吧:

澳门新浦京电子游戏 12

不对呀,代码应该是没问题的呀,为什么显示出来的效果还是会重叠呢?不过仔细观察我们可以发现相比上个版本的布局会好很多,至少这次只是末端节点重叠了,那么问题出在哪里呢?

不知道大家有没有发现,排除节点自身的大小,倒数第二层节点与节点之间的领域是相切的,那么也就是说节点的半径不仅和其孩子节点的半径有关,还与其孙子节点的半径有关,那我们把计算节点半径的方法改造下,将孙子节点的半径也考虑进去再看看效果如何,改造后的代码如下:

/**
 * 就按节点领域半径
 * @param {ht.Node} root - 根节点对象
 * @param {Number} minR - 最小半径
 */
function countRadius(root, minR) {
   ……

    var child0 = root.getChildAt(0);
    // 获取孩子节点半径
    var radius = child0.a('radius');

    var child00 = child0.getChildAt(0);
    // 半径加上孙子节点半径,避免节点重叠
    if (child00) radius += child00.a('radius');

   ……
}

下面就来看看效果吧~

澳门新浦京电子游戏 13

哈哈,看来我们分析对了,果然就不再重叠了,那我们来看看再多一层节点会是怎么样的壮观场景呢?

澳门新浦京电子游戏 14

哦,NO!这不是我想看到的效果,又重叠了,好讨厌。

不要着急,我们再来仔细分析分析下,在前面,我们提到过一个名词——领域半径,什么是领域半径呢?很简单,就是可以容纳下自身及其所有孩子节点的最小半径,那么问题就来了,末端节点的领域半径为我们指定的最小半径,那么倒数第二层的领域半径是多少呢?并不是我们前面计算出来的半径,而应该加上末端节点自身的领域半径,因为它们之间存在着包含关系,子节点的领域必须包含于其父亲节点的领域中,那我们在看看上图,是不是感觉末端节点的领域被侵占了。那么我们前面计算出来的半径代表着什么呢?前面计算出来的半径其实代表着孩子节点的布局半径,在布局的时候是通过该半径来布局的。

OK,那我们来总结下,节点的领域半径是其下每层节点的布局半径之和,而布局半径需要根据其孩子节点个数及其领域半径共同决定。

好了,我们现在知道问题的所在了,那么我们的代码该如何去实现呢?接着往下看:

/**
 * 就按节点领域半径及布局半径
 * @param {ht.Node} root - 根节点对象
 * @param {Number} minR - 最小半径
 */
function countRadius(root, minR) {
    minR = (minR == null ? 25 : minR);

    // 若果是末端节点,则设置其布局半径及领域半径为最小半径
    if (!root.hasChildren()) {
        root.a('radius', minR);
        root.a('totalRadius', minR);
        return;
    }

    // 遍历孩子节点递归计算半径
    var children = root.getChildren();
    children.each(function(child) {
        countRadius(child, minR);
    });

    var child0 = root.getChildAt(0);
    // 获取孩子节点半径
    var radius = child0.a('radius'),
        totalRadius = child0.a('totalRadius');

    // 计算子节点的1/2张角
    var degree = Math.PI / children.size();
    // 计算父亲节点的布局半径
    var pRadius = totalRadius / Math.sin(degree);

    // 缓存父亲节点的布局半径
    root.a('radius', pRadius);
    // 缓存父亲节点的领域半径
    root.a('totalRadius', pRadius + totalRadius);
    // 缓存其孩子节点的布局张角
    root.a('degree', degree * 2);
}

在代码中我们将节点的领域半径缓存起来,从下往上一层一层地叠加上去。接下来我们一起验证其正确性:

澳门新浦京电子游戏 15

搞定,就是这样子了,2D拓扑上面的布局搞定了,那么接下来该出动3D拓扑啦~

弹力布局也不是啥新鲜玩意儿了,传统弹力布局算法都是采用通过CPU迭代运算的方式,对于海量数据特别是在纯客户端运算的方式肯定是不可行的,因此这些年也有很多采用GPU的方式进行并行计算的方式可极大提高性能,等OpenCL更成熟HT
for
Web提供了WebCL的解决方案我再来张开这个话题。今天的话题采用的还是CPU,只不过我把自动布局的算法拉到了Web
Worker来运算,纯属为了好玩实际意义不大,毕竟Worker运算结果还得不断序列化给GUI页面层,不断来回数据传输也挺耗性能,当然如果你让Worker运行一段时间,只把最终结果push回Web层进行呈现还是有点实际意义的,毕竟不用Worker时js单线程运行,对这种计算密集型的算法只会卡死界面无法进行其他业务操作。

3. 加入z轴坐标,呈现3D下的树状结构

3D拓扑上面布局无非就是多加了一个坐标系,而且这个坐标系只是控制节点的高度而已,并不会影响到节点之间的重叠,所以接下来我们来改造下我们的程序,让其能够在3D上正常布局。

也不需要太大的改造,我们只需要修改下布局器并且将2D拓扑组件改成3D拓扑组件就可以了。

/**
 * 布局树
 * @param {ht.Node} root - 根节点
 */
function layout(root) {
    // 获取到所有的孩子节点对象数组
    var children = root.getChildren().toArray();
    // 获取孩子节点个数
    var len = children.length;
    // 计算张角
    var degree = root.a('degree');
    // 根据三角函数计算绕父亲节点的半径
    var r = root.a('radius');
    // 获取父亲节点的位置坐标
    var rootPosition = root.p3();

    children.forEach(function(child, index) {
        // 根据三角函数计算每个节点相对于父亲节点的偏移量
        var s = Math.sin(degree * index),
            c = Math.cos(degree * index),
            x = s * r,
            z = c * r;

        // 设置孩子节点的位置坐标
        child.p3(x + rootPosition[0], rootPosition[1] - 100, z + rootPosition[2]);

        // 递归调用布局孩子节点
        layout(child);
    });
}

上面是改造成3D布局后的布局器代码,你会发现和2D的布局器代码就差一个坐标系的的计算,其他的都一样,看下在3D上布局的效果:

澳门新浦京电子游戏 16

恩,有模有样的了,在文章的开头,我们可以看到每一层的节点都有不同的颜色及大小,这些都是比较简单,在这里我就不做深入的讲解,具体的代码实现如下:

var level = 4,
    size = (level + 1) * 20;

var root = createNode(dataModel);
root.setName('root');
root.p(100, 100);

root.s('shape3d', 'sphere');
root.s('shape3d.color', randomColor());
root.s3(size, size, size);

var colors = {},
    sizes = {};
createTreeNodes(dataModel, root, level - 1, 5, function(data, level, num) {
    if (!colors[level]) {
        colors[level] = randomColor();
        sizes[level] = (level + 1) * 20;
    }

    size = sizes[level];

    data.setName('item-' + level + '-' + num);
    // 设置节点形状为球形
    data.s('shape3d', 'sphere');
    data.s('shape3d.color', colors[level]);
    data.s3(size, size, size);
});

在这里引入了一个随机生成颜色值的方法,对每一层随机生成一种颜色,并将节点的形状改成了球形,让页面看起来美观些(其实很丑)。

澳门新浦京电子游戏 17

提个外话,节点上可以贴上图片,还可以设置文字的朝向,可以根据用户的视角动态调整位置,等等一系列的拓展,这些大家都可以去尝试,相信都可以做出一个很漂亮的3D树出来。

到此,整个Demo的制作就结束了,今天的篇幅有些长,感谢大家的耐心阅读,在设计上或则是表达上有什么建议或意见欢迎大家提出,点击这里可以访问HT
for Web官网上的手册。

澳门新浦京电子游戏 18
 

以下是页面部分的代码,通过new
Worker(‘workderjs’)构建Worker后台运行对象,通过worker.addEventListener(‘message’,
..)监听后台自动布局后派发的图元位置信息进行更新,通过worker.postMessage(info)发送界面拖拽图元位置变化信息。

       function reload() {                    
            var info = {
                A: parseInt($("A").value), 
                B: parseInt($("B").value)
            };
            reloadModel(dataModel, info);
            worker.postMessage(info);
        }

        function init() {        
            dataModel = new ht.DataModel();                   
            g3d = new ht.graph3d.Graph3dView(dataModel); 
            toolbar = new ht.widget.Toolbar(items);
            borderPane = new ht.widget.BorderPane();
            borderPane.setTopView(toolbar);
            borderPane.setCenterView(g3d);       

            g3d.mi(function(evt){
                if(evt.kind === 'betweenMove'){                
                    moveMap = {};
                    g3d.sm().each(function(data){
                        if(data instanceof ht.Node){
                            moveMap[data._id] = data.p3();
                        }
                    });
                    worker.postMessage({moveMap: moveMap});                
                }
            }); 

            worker = new Worker("worker.js");    
            worker.addEventListener('message', function(e) {
                var info = e.data;
                for(var id in info.result){
                    var data = dataModel.getDataById([id]);
                    if(data && !g3d.isSelected(data)){
                        data.p3(info.result[id]);
                    }                
                }  
            }); 

            reload();
        }

以下是后台Work.js的代码,通过importScripts(“ht.js”)引入HT核心包,通过importScripts(“ht-forcelayout.js”)引入HT的弹力布局插件,通过importScripts(“util.js”)引入和页面代码共享的一些通用函数,通过self.postMessage({result:
result})发送自动布局运算结果推送到页面,通过
self.addEventListener(‘message’,
…)监听页面发过来的位置变化信息,从而实现了前后台的互通。

importScripts("ht.js");
importScripts("ht-forcelayout.js");
importScripts("util.js");

ht = self.ht;
dataModel = new ht.DataModel();
forceLayout = new ht.layout.Force3dLayout(dataModel);

forceLayout.onRelaxed = function(){    
    var result = {};
    dataModel.each(function(data){
       if(data instanceof ht.Node){
           result[data._id] = data.p3();
       } 
    });
    self.postMessage({result: result});
};
forceLayout.start();    

self.addEventListener('message', function(e) {
    var info = e.data;
    if(info.moveMap){
        dataModel.sm().cs();
        for(var id in info.moveMap){
            var data = dataModel.getDataById(id);
            if(data){
                data.p3(info.moveMap[id]);
                dataModel.sm().as(data);
            }
        }
    }
    else{
        reloadModel(dataModel, info);                 
    }        
}, false);

以下视频为在Android平板上跑3D拓扑自动布局的效果,这个例子纯粹为了玩玩Web
Workers,这样折腾性能并不会提高,甚至因为来回序列化更费性能,Web
Worker可以使用的场景并不太多,比较适合纯数学运算的业务逻辑,同时还需要注意跑在Worker的代码是不能操作任何界面对象,例如window和document之类的对象。

下篇《3D拓扑自动布局之Node.js篇》我们再将算法移到Node.js端玩

  

  

发表评论

电子邮件地址不会被公开。 必填项已用*标注